首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1198篇
  免费   30篇
  国内免费   169篇
化学   1370篇
晶体学   1篇
综合类   13篇
物理学   13篇
  2023年   28篇
  2022年   9篇
  2021年   23篇
  2020年   18篇
  2019年   43篇
  2018年   36篇
  2017年   35篇
  2016年   19篇
  2015年   21篇
  2014年   62篇
  2013年   79篇
  2012年   60篇
  2011年   75篇
  2010年   76篇
  2009年   71篇
  2008年   96篇
  2007年   82篇
  2006年   79篇
  2005年   71篇
  2004年   92篇
  2003年   53篇
  2002年   42篇
  2001年   29篇
  2000年   20篇
  1999年   19篇
  1998年   8篇
  1997年   13篇
  1996年   17篇
  1995年   18篇
  1994年   20篇
  1993年   18篇
  1992年   14篇
  1991年   18篇
  1990年   13篇
  1989年   10篇
  1988年   5篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
排序方式: 共有1397条查询结果,搜索用时 46 毫秒
1.
For the first time, intensification of monooleoyl glycerol (MOG) synthesis has been investigated in an ultrasonic-infrared-wave (USIRW) promoted batch reactor. Esterification of octadecanoic acid (ODA) with glycerol (Gl) has been conducted [using Amberlyst 36 wet catalyst] in three different reactors, namely traditional batch reactor (TBR), infrared wave promoted batch reactor (IRWPBR), and USIRW-promoted batch reactor (USIRWPBR) to assess the relative efficacy. The energy-efficient USIRWPBR remarkably intensifies the ODA-Gl esterification as manifested through superior ODA conversion (92.5 ± 1.25%) compared to that achieved in IRWPBR (79.8 ± 1.2%) and TBR (36.39 ± 1.25%). The most favorable reaction condition for optimum ODA conversion and maximum MOG yield was identified through statistical optimization over a selected parametric range, namely 3-5 Gl/ODA mole ratio, 0.004-0.006 g/mL Amberlyst 36 catalyst concentration, 300-700 rpm impeller speed, and 333-353 K reaction temperature. The present study also reports the formulation and validation of an innovative reaction kinetics, that is, concurrent noncatalytic and heterogeneously catalyzed (CNCHC) reaction mechanism in addition to the conventional heterogeneous kinetic models (LH and Eley-Rideal mechanisms). Under combined USIRW, the CNCHC esterification mechanism could best describe ODA-Gl esterification (R2 = 0.98) compared to LH (R2 = 0.97) and Eley-Rideal (R2 = 0.88) mechanisms. The optimal product (MOG) was characterized by differential scanning calorimetry and thermogravimetric analysis to assess its crystallization property and thermal stability for possible application as plasticizer/fuel additives.  相似文献   
2.
The objective of this research work was to investigate the kinetics of esterification of acetic acid with n-butanol through the variation of experimental parameters. The reaction mixture was catalyzed heterogeneously by a sulfonated catalyst in batch mode of operation. The catalyst was prepared from abundantly available agro-waste, Cajanus cajan husk by chemical activation process, which produces a carbon-based solid catalyst with high surface area. The catalyst was characterized by a Brunauer-Emmet-Teller surface analyzer and Fourier transform infrared spectroscopy to know the surface morphology. Process parameters such as contact time, reaction temperature, and catalyst loading, which can influence the extent of conversion of reactants, were studied. Furthermore, the kinetic investigation was also carried out to estimate the kinetic parameters for uncatalyzed and catalyzed reaction using the second-order pseudo-homogeneous (P-H), Eley-Rideal (E-R), and Langmuir-Hinshelwood (LH) kinetic models for this research work. The kinetic parameters such as activation energy, preexponential factor, and the thermodynamic parameters such as enthalpy and entropy were estimated for uncatalyzed and catalyzed reactions using these three models. The process conditions were optimized for catalyzed and uncatalyzed reactions to obtain the maximum product yield by minimizing root mean square error of each experimental data using the MS-excel solver tool. Thus, this study reveals the high potential of an agro-waste, Cajanus cajan husk as raw material for the synthesis of catalyst. The results show that the E-R model is more appropriate for predicting the dynamic data of an esterification reaction, as the forward rate of reaction estimated using the E-R model are more modified than P-H and L-H models.  相似文献   
3.
Graphene oxide (GO) is a versatile platform with unique properties that have found broad applications in the biomedical field. Double functionalization is a key aspect in the design of multifunctional GO with combined imaging, targeting, and therapeutic properties. Compared to noncovalent functionalization, covalent strategies lead to GO conjugates with a higher stability in biological fluids. However, only a few double covalent functionalization approaches have been developed so far. The complexity of GO makes the derivatization of the oxygenated groups difficult to control. The combination of a nucleophilic epoxide ring opening with the derivatization of the hydroxyl groups through esterification or Williamson reaction was investigated. The conditions were selective and mild, thus preserving the structure of GO. Our strategy of double functionalization holds great potential for different applications in which the derivatization of GO with different molecules is needed, especially in the biomedical field.  相似文献   
4.
《Mendeleev Communications》2022,32(6):792-794
Alkyl-H-phosphinic acid alkyl esters are synthesized in 65–71% yield via chemoselective reaction of alkyl bromides with available alkyl-H-phosphinic acids (60–65 °C, Et3N). The latter are prepared, in turn, by direct phosphorylation of alkyl bromides with red phosphorus under phase-transfer conditions.  相似文献   
5.
《印度化学会志》2023,100(9):101074
In this paper, we report a facile and one-pot hydrothermal synthesis of FeVO4-rGO nanorod composite and its application as a heterogeneous catalyst in the oxidative esterification reaction of aldehydes using hydrogen peroxide oxidant. The nanomaterial is thoroughly characterized by different techniques, namely, XPS, FESEM, elemental mapping, XRD, Raman, HRTEM, etc. The as-prepared nanocatalyst shows good activity for the controlled base-free oxidative esterification of various aromatic aldehydes in alcohol solvents under refluxing conditions, achieving good yields of the desired esters. Furthermore, the substrate scope was explored over a wide array of substituted aromatic aldehydes with diverse electron-withdrawing and electron-donating groups in the phenyl ring. The presence of heterogeneous interfaces-induced properties in the nanorod composite results in synergistic effects to provide good catalytic performance. Thus, binary transition metal oxide-reduced graphene oxide-based nanocomposite as a nanocatalyst can open doors for efficient and sustainable esterification of aromatic aldehydes and aliphatic alcohols under oxidative conditions.  相似文献   
6.
Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,β-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including β-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.  相似文献   
7.
The short-chain dehydrogenase/reductase (SDR) superfamily members acyl-ACP reductases FabG and FabI are indispensable core enzymatic modules and catalytic orientation controllers in type-II fatty acid biosynthesis. Herein, we report their distinct substrate allosteric recognition and enantioselective reduction mechanisms. FabG achieves allosteric regulation of ACP and NADPH through ACP binding across two adjacent FabG monomers, while FabI follows an irreversible compulsory order of substrate binding in that NADH binding must precede that of ACP on a discrete FabI monomer. Moreover, FabG and FabI utilize a backdoor residue Phe187 or a “rheostat” α8 helix for acyl chain length selection, and their corresponding triad residues Ser142 or Tyr145 recognize the keto- or enoyl-acyl substrates, respectively, facilitating initiation of nucleophilic attack by NAD(P)H. The other two triad residues (Tyr and Lys) mediate subsequent proton transfer and (R)-3-hydroxyacyl- or saturated acyl-ACP production.  相似文献   
8.
Chiral biscyclopropanes are an important skeleton in many bioactive molecules. However, there are few routes to synthesize these molecules with high stereoselectivity due to the nature of multiple stereocenters. Herein, we report the first example of Rh2(II)-catalyzed enantioselective synthesis of bicyclopropanes with alkynes as dicarbene equivalents. The bicyclopropanes with 4–5 vicinal stereocenters and 2–3 all-carbon quaternary centers were constructed in excellent stereoselectivity. This protocol features high efficiency and excellent functional group tolerance. Moreover, the protocol was also extended to the cascaded cyclopropanation/cyclopropenation with excellent stereoselectivities. In these processes, both sp-carbons of alkyne were converted into stereogenic sp3-carbons. Experimental and density functional theory (DFT) calculations revealed that the cooperative weak hydrogen bonds between the substrates and the dirhodium catalyst may play key roles in this reaction.  相似文献   
9.
Extant enzymes with precisely arranged multiple residues in their three-dimensional binding pockets are capable of exhibiting remarkable stereoselectivity towards a racemic mixture of substrates. However, how early protein folds that possibly featured short peptide fragments facilitated enantioselective catalytic transformations important for the emergence of homochirality still remains an intriguing open question. Herein, enantioselective hydrolysis was shown by short peptide-based nanotubes that could exploit multiple solvent-exposed residues to create chiral binding grooves to covalently interact and subsequently hydrolyse one enantiomer preferentially from a racemic pool. Single or double-site chiral mutations led to opposite but diminished and even complete loss of enantioselectivities, suggesting the critical roles of the binding enthalpies from the precise localization of the active site residues, despite the short sequence lengths. This work underpins the enantioselective catalytic prowess of short peptide-based folds and argues their possible role in the emergence of homochiral chemical inventory.  相似文献   
10.
One-step process for the preparation of a 1,3-dienyl-5-ester motif from readily available substrate remains a challenging work in organic synthesis. We herein report the first example of C5-regioselective esterification of unactivated dienyl alcohols, using free carboxylic acids as nucleophiles under mild conditions, providing a series of 1,3-dienyl-5-ester compounds in excellent regioselectivity and E-selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号